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1 "Corner" points of a polyhedron

In this section, we provide three alternative characterizations of "corner" points of a polyhedron. These
assume a special role in linear programming, since, informally speaking, we can say that an optimal solution
of a linear program "tends" to correspond to one of such points.

The first characterization of "corner" point, refers to the fact that these points cannot be expressed as a
convex combination of other two points of the polyhedron,

Definition (extreme point): let P C R™ be a polyhedron. A vector x € P is an extreme point of P if
there are no two vectors y,z € P: y # x, z # x and a scalar A : 0 < A < 1 such that:

r=Ay+(1—-XN)z.

The second characterization refers to the "corner" point as to the unique optimal solution of a linear program
having P as feasible set.

Definition (vertex): Let P be a polyhedron. A vector z € P is a vertex of P if there exists some vector

ceR™ dz <y for every y € P: y # x.

The third characterization refers to the "corner" point in terms of a set of linear constraints and is introduced
since it is particularly useful from an algorithmic point of view.

As first step, we introduce a polyhedron P C R"™ defined by the following systems of linear equality and
inequality constraints:

a;bel 1€ b
a;a:gbl 1€ Iy
/
i

a;,x =b; 1 € I3

We say that a constraint ¢ belonging to the previous system is active in Z if alz = b;.
Given these premises, the following result holds:

Theorem: Let Z € R” and let I4°T = {i € I : a/z = b;} be the set of indices of constraints that are active
in . The following statements are equivalent:

1. there exist n vectors in the set {a; : i € AT} that are linearly independent;
2. the span of the vectors in the set {a; : i € I4¢T} is R™;
3. the system of equations a;z = b; with i € TACT has a unique solution.

After having introduced such result, we can proceed to give the third characterization of corner point
as a point of the polyhedron where there are n active constraints corresponding with linearly independent
vectors a;.

Definition (basic feasible solution): let P be a polyhedron.

A vector € R" is a basic solution if: a) all equality constraints are active; b) among the vectors a; associated
with constraints active in Z, there are n vectors that are linearly independent.

A vector ¥ € R” that is a basic solution and that additionally satisfies all the constraints defining P is a
basic feasible solution.

Theorem: Let P be a non-empty polyhedron and Z € P. The following statements are equivalent:
1. Z is an extreme point;
2. x is a vertex;

3. T is a basic feasible solution.
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Proof. We prove the statement following the implication order 2 = 1, 1 = 3, 3 = 2. Note that without
loss of generality we assume that P is defined only by constraints of the type a,z > b; and ajz = b;.

vertex = extreme point

Suppose that Z is a vertex and consider any two points y,z € P: y # T and z # Z. Consider additionally a
scalar 0 < \ < 1.

By definition of vertex, there exists ¢ € R" : ¢z < ¢y and ¢Z < /2. This implies that ¢z < /(Ay+(1—X)z)
and then that Z # Ay + (1 — \)z, thus showing that Z cannot be expressed as a convex combination of other
points of P and is thus an extreme point.

extreme point = basic feasible solution

We prove this by contradiction, assuming that an extreme point z is not a basic feasible solution.

Let IACT = {i € I : a}Z = b;}. Since 7 is not a basic feasible solution, there are no n linearly independent
vectors in {a; : I49T}. As a consequence, the vectors a; with i € I4CT lie in a proper subspace of R™ and
there exists a non-zero vector d € R" such that aid = 0, for all i € JACT,

Let € > 0 be a small number and consider the vectors y = ¥ 4+ ed and z = & — ed. It can be noted that
aly = alz = a}7 for i € ICT. Moreover, for i ¢ IACT_ it holds @’z > b; and, for sufficiently small ¢, it also
holds aly > b; (e must be such that e|ajd| < a;z — b;). Therefore y € P and, through similar arguments, we
can prove that z € P. By finally noticing that:

Y+ z
2

T =

we obtain the contradiction that Z can be expressed as a convex combination of y and z thus contradicting
the fact that  is an extreme point.

basic feasible solution = vertex

Let Z be a basic feasible solution and I4¢T = {i € I : alz = b;} be the set of indices of active constraints in
z.

If we define the cost vector ¢ = ), acr a;, we have:

and for every x € P and ¢, it holds ajz > b; and

dx = Z a;r > Z b;

ieIACT ie]ACT

The two chains of (in)equalities show that Z is an optimal solution for the problem of minimizing ¢’z
over P. Additionally, in the second chain, the equality holds if and only if a}x = b; for every I4¢7T.
Since ¥ is a basic feasible solution, there are n linearly independent constraints that are active in z and z is
the unique solution to the system of equations defined by ajz = b; with I ACT " on the basis of the previous
theorem. It follows that Z is the unique optimal solution of ¢’z over P and, by definition, Z is a vertex.
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